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Equation of state for weakly coupled quantum plasmas

J. Vorberger,* M. Schlanges, and W. D. Kraeft
Institut für Physik, Ernst-Moritz-Arndt-Universita¨t Greifswald, Domstrasse 10a, 17489 Greifswald, Germany

~Received 13 November 2003; published 29 April 2004!

We calculate thermodynamic properties for a dense hydrogen plasma and a quantum electron gas using
thermodynamic Green’s function techniques. Our perturbation approach is appropriate to give reliable results
in the weak coupling regime. In particular, the contribution of the exchange term of the ordere4 is fully
included for the nondegenerate case as well as for the dense highly degenerate quantum region. We compare
our results for the equation of state with data obtained by different numerical simulations.

DOI: 10.1103/PhysRevE.69.046407 PACS number~s!: 52.25.Kn, 52.27.Aj, 52.27.Gr
, o
fo
h
e
l
ri

th
e
re
nu
ee
e
n
av
it
e
n

i
tis
on
fu
tu

e
en
de
ch
s
se
an
e
ic
ra

b
u

the
-

of
l

by

in-

o
ex-
I. INTRODUCTION

An exact knowledge of thermodynamic properties, e.g.
hydrogen or deuterium, is of great importance not only
scientific reasons but also for technical applications. T
models of the inner structure of stars or giant gas plan
depend on the equation of state~EOS! data and so do mode
calculations concerning inertially confined fusion expe
ments. Shock experiments on hydrogen and deuterium@1–3#
are usually evaluated by discussing hugoniots, for which
theoretical inputs are EOS data. The comparison of differ
hugoniots shows essential differences both between diffe
experiments and between different theories including
merical simulations, and on the other hand also betw
theory and experiment@4–6#. For this reason it seems to b
desirable to have reliable EOS data in limiting situatio
where the theoretical approximations are justified. We h
then to demand that the numerical simulations coincide w
analytical results. The region in between which is not acc
sible to theoretical treatment should then be covered by
merical simulations or at least by Pade´ formulas@7#.

The aim of this paper is to investigate the thermodynam
properties of dense quantum plasmas using quantum sta
cal theory. In particular, the imaginary time Green’s functi
technique is applied, which turned out to be a power
method for describing physical properties of dense quan
plasmas in thermodynamic equilibrium@9,10#.

First, the basic equations are presented and the schem
approximation is given which is applied in the subsequ
calculations. The numerical evaluation of the EOS is
scribed in detail in Sec. III. The different contributions su
as the Montroll-Ward and thee4 exchange terms as well a
the inversion procedure are discussed. Finally, we pre
results for thermodynamic quantities for the electron gas
the fully ionized hydrogen plasma. Pressure and internal
ergy are compared to wave-packet molecular-dynam
~WPMD! calculations and to data obtained by path-integ
Monte Carlo~PIMC! simulations.

II. BASIC EQUATIONS AND APPROXIMATIONS

Considering the plasma in the grand canonical ensem
the EOS can be calculated using the charging form
@8–10#
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1 dl

l
^lV&. ~1!

Herep2p0 is the excess part of the pressure,V the volume
of the system,̂ lV& the mean potential energy, andl the
interaction strength parameter. In second quantization
two-particle Green’s functionGab determines the mean po
tential energy1

^lV&5
l

2 (
asa

(
bsb

E
0

2 ib

d1dr2Vab~12!

3Gab~1211121!u t25t
1
1. ~2!

We used, e.g., 15r1 ,t1 . In the case of a plasma consisting
charged particles of speciesa andb the interaction potentia
is the Coulomb potential, i.e.,Vab(r12r2)5qaqb /ur12r2u.
All statistical information is contained inGab . For Coulomb
systems, it is convenient to account for collective effects
introduction of a screened potentialVab

s defined by the
screening equation

Vab
s ~12!5Vab~12!

1(
cd

E
0

2 ib

d1̄d2̄Vac
s ~11̄!Pcd~ 2̄1̄,2̄1̄!Vdb~ 2̄2!.

~3!

Now the polarization functionPab replaces the two-particle
Green’s function, while the screened potential appears
stead of the Coulomb one:

^lV&5
1

2 (
asa

(
bsb

E d1dr2$lVab~12!Ga~1111!Gb~221!

1Vab
s ~12,l!Pab~12,12!%. ~4!

Here the Hartree term appears separately~the first term on
the right-hand side! while it is still included in Eq.~2!. Equa-
tion ~4! is our starting point for further calculations. We d
not discuss the general problem, which cannot be solved

1We use Heaviside units,\51, e252, 2me51, aB51.
©2004 The American Physical Society07-1
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VORBERGER, SCHLANGES, AND KRAEFT PHYSICAL REVIEW E69, 046407 ~2004!
actly. For the goal of this paper it is sufficient to give the fi
terms of a perturbation series for the polarization functi
for further details see@9#:

~5!

These terms have their origin in the screened ladder appr
mation of the polarization function. The wavy lines deno
dynamically screened potentials determined by Eq.~3!. From
left to right we see the random phase approximation~RPA!
contribution, the vertex term~first ladder diagram!, and two
first order self-energy contributions to the Green’s functio
of the RPA. If this series of terms is inserted into Eq.~4!, we
get the following contributions to the mean value of the p
tential energy. We want to establish a perturbation expan
in powers ofe2, i.e., in powers of the Coulomb potential. Fo
this purpose, we express all screened potentials with the
of the screening equation~3! and take into account only
terms with powers up toe4 ~two potential lines! @11#:

~6!

From left to right we see the Hartree, Hartree-Fock~HF!,
Montroll-Ward ~MW!, normale4 exchange, and anomalou
e4 exchange terms. The first gives the mean field contri
tion. This term vanishes in a quasineutral system. The sec
term ~HF! is the exchange term of ordere2. The MW term is
the first nonideality correction due to the Coulomb intera
tion. Here one screened potential must be retained in ord
keep this term convergent. In the low density limit the M
contribution is the Debye-Hu¨ckel correction to the ideal ga
result. The HF and MW terms arise from the RPA appro
mation of the polarization functionPab . The first ladder
term of the polarization function~vertex! gives the fourth
term in this series, the normal exchange term of ordere4.
The last two identical graphs are a result of first order s
energy corrections to the RPA and are called anomaloue4

exchange terms. This expansion will be denoted thee4 ex-
pansion in the rest of the paper although the MW term c
tains infinite powers ofe2 in the screened potential to avo
Coulomb divergences. This series takes into account o
weak interactions. Therefore it can be used to desc
weakly coupled plasmas~G<1, G5^Epot&/^Ekin&). No ap-
proximations have been made concerning the degenerac
the plasma. The Fermi statistics is fully included. So t
expansion provides a good approximation for the low den
and for the high density~nonrelativistic! plasma.

Using Eqs.~1! and~6! we get the pressure as a function
the chemical potentialm for a weakly coupled quantum
plasma:
04640
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p~$bmc%!5(
a

za

b
I 3/2~bma!1(

a
zajaIHF~bma!

1pMW~$bmc%!1(
a

pa
e4n~bma!

1(
a

pa
e4a~bma!. ~7!

The arrangement of the terms is nearly the same as in
~6!. The ideal contribution is followed by the HF, the MW
and both of thee4 exchange terms. Some abbreviations we
used:za5(2sa11)/La

3 andja5ea
2/La . The sum runs over

the species.La
252p/(makBT) is the thermal wavelength

b51/(kBT) the inverse temperature,I 3/2 the Fermi integral
of order 3/2, and IHF the HF integral @12# IHF

5*
2`
bmadaI 21/2

2 (a). The density is given byna5]p/]ma ,

na~$bmc%!5zaI 1/2~bma!1zajaI 21/2
2 ~bma!

1
]

]ma
@pMW~$bmc%!1pa

e4n~bma!

1pa
e4a~bma!#. ~8!

Further explicit calculations require the numerical evaluat
of the different contributions. Having pressure and density
a function of the chemical potential, one has to eliminate
latter to get the usual EOS, i.e., the pressure as a functio
the density. This is done in the next sections.

III. NUMERICAL TREATMENT

A. Special contributions

The calculation of the main input quantities for both pre
sure and internal energy requires some numerical effort
this section we want to analyze the different contributio
and give some results, especially for thee4 exchange terms

In full generality the MW term is given in terms of th
~longitudinal! dielectric function«(p,v),

pMW~$bmc%!52
1

4p3E0

`

p2dpPE
0

`

dv cothS bv

2 D
3Farctan

Im «~p,v!

Re«~p,v!
2Im «~p,v!G . ~9!

In this term it is sufficient to take the dielectric function
the random phase approximation. For the treatment of deg
erate quantum plasmas it is necessary to retain full dynam
in the screening of the Coulomb potential and in the diel
tric function. In general, the calculation of the MW ter
means computing a three-dimensional integral~two plus one
in the real part of the dielectric function!. Figure 1 shows the
behavior of the MW pressure from the low densit
nondegenerate to the high density/degenerate region for
ionized hydrogen. We want to remark that, in contrast to
exchange terms of ordere4, this term is not simply the sum
7-2
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EQUATION OF STATE FOR WEAKLY COUPLED . . . PHYSICAL REVIEW E69, 046407 ~2004!
of electron and proton contributions. Due to electron-pro
correlations it cannot be split into a sum over the specie

The normal exchange term of ordere4 can be written in
momentum-frequency space as

pe4n~$bmc%!5V(
a

maE dpdq1dq2

~2p!9

3
Vaa~p!Vaa~p1q11q2!

q1
21q2

22~p1q1!22~p1q2!2

3$ f a~q1! f a~q2!@12 f a~q11p!#

3@12 f a~q21p!#2 f a~q11p! f a~q21p!

3@12 f a~q1!#@12 f a~q2!#%. ~10!

Here Vaa is the bare Coulomb potential andf a are Fermi
functions. After some manipulations there remain only
integrations. The integrations can be done using Monte C
integration. Both in the low density and in the high dens
region, the exactly known limiting results for this integr
@9,13# are reproduced with high accuracy. In Fig. 2 this te
is shown for a temperature ofT5106 K as a function of the
electron degeneracy parameternLe

3 . In this case, the exces
pressure contribution according to Eq.~1! can be calculated
aspe4n52(1/2)^V&e4n from the mean exchange energy. F
low degeneracy it is dominated by the electrons, whereas
protons determine the behavior of this contribution
higher values of the electron degeneracy parameter.

For purposes discussed below we still consider
anomalouse4 term and analyze especially its limiting beha
ior. The term reads

pe4a~$bmc%!522Vb(
a
E dkdpdq

~2p!9
Vaa~q2k!

3Vaa~q2p! f a~k! f a~p! f a~q!@12 f a~q!#.

~11!

FIG. 1. Ratio of MW pressure and ideal pressure for hydrog
~solid! and an electron gas~dashed! as functions of the electron
density. TheT50 results~dotted! are additionally shown~upper,
hydrogen; lower, electron gas!. The dash-dotted line gives th
Debye-Hückel low density result for the electron gas.
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The evaluation is simple and can easily be extended to
gions where exact limiting results are known. Figure 3 sho
the behavior of this term, which is very similar to that of th
normale4 exchange term.

With the knowledge of all of the terms in Eq.~7!, calcu-
lation of thermodynamic quantities is now possible.

B. Inversion and thermodynamic quantities

Now the contributions to the EOS given by Eq.~7! are
explicitly known. Therefore all thermodynamic quantities a
determined on this level of approximation. Because of E
~7! and~8! we have an EOS in the grand canonical ensem
In any case, we have to satisfy the condition of quasineut
ity in the two-component plasma, i.e., for a given chemi
potentialma of speciesa Eq. ~8! defines the correspondin
chemical potentialmb due to(cecnc50. Although there is
such an equation of state as a function of the fugacityza
(za5ebma), it is also of great importance to get the explic

n
FIG. 2. Normale4 exchange energy for hydrogen~solid! and an

electron gas~dashed! as function of the electron degeneracynLe
3 .

Additionally, low density ~dash-dotted: upper curve, electron
lower curve, protons! and T50 limiting results ~dotted: upper
curve, protons; lower curve, electrons! are shown.

FIG. 3. Anomalouse4 exchange energy for hydrogen~solid! as
function of the electron degeneracy parameternLe

3 . Additionally,
low density~dash-dotted: upper curve, electrons, lower curve, p
tons! andT50 limiting results~dotted: upper curve, protons; lowe
curve, electrons! are shown.
7-3
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VORBERGER, SCHLANGES, AND KRAEFT PHYSICAL REVIEW E69, 046407 ~2004!
dependence on the densityp5p(n). This procedure of the
elimination of the fugacity from the pressurep5p($zc%)
through na5za(]/]za)bp($zc%) is called inversion. This
means having the thermodynamic quantities in the grand
nonical ensemble first and then going to the canonical
semble. Equations~7! and ~8! are no fugacity expansions i
the usual sense. They contain all powers of the fugacity
consequence of the quantum nature of the treated syst
which is fully included in our approach.

To solve Eq.~8! analytically for the fugacity is impos
sible. Furthermore, to have such an expression would
necessarily result in a more exact equation of state than u
approximate equations for the fugacity. This is due to
approximation in the starting equations. Because of our li
tation of taking into account only powers up toe4 the final
expression should also contain only terms up to the sa
order.

The inversion procedure is done in detail as follows@14#.
We split the chemical potential into an ideal and differe
interaction parts each containing zero, one (;e2), two
(;e4), or more interactionsm5m01m (1)1m (2)1•••. In
our case it is appropriate to suggest thatm ( i )!m0 ; i eN.
Then we can do a Taylor expansion of Eq.~8! aroundm0. In
this way we get expressions for all of the interaction parts
the chemical potential as functions of the free chemical
tential if we demand that the density is given byna

5zaI 1/2(bma
0). According to our starting approximation a

terms of higher order in the interaction thane4 are dropped.
Doing the same Taylor expansion in Eq.~7! and inserting the
results for the interaction contributions of the chemical p
tential as obtained in the previous step, we get the pressu
the canonical ensemble as a function of the free chem
potentialm0 and thus of the density. This procedure we c
inversion 2, and the curves obtained with this inversion c
be seen in Fig. 4.

FIG. 4. Pressure with respect to the ideal part for an electron
as function of the density. Different approximations and differ
types of inversion for the EOS are shown. The solid curve (e4,
golden rule! is given by Eq.~12!. MW means that the normale4

exchange term is omitted. DH denotes the low density Deb
Hückel correction to the ideal gas. TheT50 curve is the limiting
result of Gell-Mann and others@13,16#.
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The pressure due to inversion 2 is correct in the inter
tion order but suffers from a different shortcoming. In th
low density nondegenerate case this expansion becom
real density expansion, but is inconsistent in the order of
density. So we have to neglect the anomalouse4 exchange
term, because it is of ordern3. At T50, the same term is
compensated by some contributions arising from our inv
sion procedure@15#. Therefore we completely omit the
anomalous exchange term and the compensation terms.
procedure can be summarized under the so called golden
inversion.

We arrive at the following expression for the pressure a
function of the density (a05bm0):

p~$ac
0%!5(

a

za

b
I 3/2~aa

0!1(
a

zajaIHF~aa
0!1pMW~$ac

0%!

1(
a

pa
e4n~aa

0!2(
a

zajaI 21/2~aa
0!I 1/2~aa

0!

2(
a

I 1/2~aa
0!

bI 21/2~aa
0!

]

]aa
@bpMW~$ac%!

1bpa
e4n~aa!#ua

a
0. ~12!

The density can now easily be calculated fromna

5zaI 1/2(aa
0). For a given density, the chemical potentials f

the species are different. Now it is possible to derive expr
sions for any thermodynamic function. WithU5F
2T(dF/dT), we get

U

V
5

3

2
kBT(

a
zaI 3/2~aa

0!1(
a

zajaIHF~aa
0!2pMW~$ac

0%!

2(
a

pa
e4n~aa

0!2
3

2 (
a

zajaI 21/2~aa
0!I 1/2~aa

0!

1T
]

]T S pMW~$ac
0%,T!1(

a
pa

e4n~aa
0! D U

n5const

. ~13!

These expansions are valid for weakly coupled multicom
nent plasmas at any degeneracy. In theT50 limit they re-
duce to ther s expansion (r s is the Brueckner parameter! of
Gell-Mann and others@13,16#. In the low density high tem-
perature limit, Eqs.~12! and ~13! reduce to density expan
sions up to (ne2)2 @17#.

In Fig. 4, the results from different types of inversions a
compared to each other. It is clearly visible that, especially
the region where no limiting law is valid, one has to b
careful in using one approximation or another. Unphysi
behavior of the pressure arises if not all terms of a particu
order are taken into account. As pointed out before, we pr
the consistent approximation up to ordere4 obtained by the
golden rule scheme. The anomalouse4 exchange term is of
higher order at low densities and is compensated atT50 and
will thus be omitted from our further discussion. In contra
the inclusion of the normale4 term is necessary for a con
sistent approximation. The difference between our newe4

as
t

-
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EQUATION OF STATE FOR WEAKLY COUPLED . . . PHYSICAL REVIEW E69, 046407 ~2004!
approximation and our older MW scheme~without the nor-
mal e4 term! is essential and can be seen in Fig. 4~solid line
versus long dashed line!.

IV. RESULTS AND DISCUSSION

A. The quantum electron gas

Now we want to discuss our results for the EOS and co
pare our findings with results from different methods. Let
start with the equation of state for an electron gas. Th
isotherms for the pressure according to Eq.~12! using the
golden rule scheme are shown in Fig. 5. For low and h
densities the pressure approaches the ideal result. In t
limiting cases it is not necessary to evaluate the full expr
sions of Eq.~12!. As is shown, simple analytical expressio
@16,17# describe the pressure with high accuracy. Only in
intermediate range of densities from 1021 to 1024 cm23 do
we find deviations from the limiting slopes. From higher
lower temperatures the minima become more developed
move to lower densities. This is due to the relevance of
interaction terms with respect to the ideal parts of the pr
sure. At higher densities quantum corrections are of imp
tance and the curves merge into the ideal behavior (p/p0
51). Moreover, it can be seen that the normale4 exchange
term gives relevant contributions only for lower tempe
tures. The region of validity of our perturbation expansi
has to be proven carefully. We mention that this intermed
region is, at present, not covered by a consequent theory
should, thus, be subject to numerical simulations wh
could support Pade´ approximations.

Let us consider additionally the radial distribution fun
tion ~RDF! which is of interest for many investigations. It
obtained by a functional derivative of the mean poten
energy with respect to the interaction potential. From
mean potential energy given by Eq.~6!, one may deduce the
corresponding approximation for the RDF. Neglecting t

FIG. 5. Pressure of an electron gas normalized by the id
pressure at different temperatures as function of the density.
means the nondegenerate Debye–Hu¨ckel correction to the ideal ga
result. TheT50 result is due to Gell-Mann and Brueckner@16#.
The dashed curves are in MW approximation; the solid curves
into account also the normale4 term @Eq. ~12!#.
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anomalouse4 term, the RDF for an electron gas can then
written as

g~r !511gHF~r !1gMW~r !1ge4n~r !. ~14!

Using momentum representation the Montroll-Ward and
normale4 exchange terms are given by

gMW~p!5
2

n2E dv

2p

nB~v!

Vee~p!
@ Im «21~p,v!2Im «~p,v!#,

ge4n~p!52
2m

n2 E dq1dq2

~2p!6

Vee~p1q11q2!

q1
21q2

22~p1q1!22~p1q2!2

3$ f ~q1! f ~q2!@12 f ~q11p!#@12 f ~q21p!#

2 f ~q11p! f ~q21p!@12 f ~q1!#@12 f ~q2!#%.

~15!

After Fourier transformation, the RDF in position space
found. In Fig. 6 results for the RDF of an electron gas a
shown. For comparison a RDF calculated by a hyperne
chain ~HNC! scheme was drawn. We used a pure Coulo
potential and theALLNAT algorithm to calculate the HNC
RDF. To this density and temperature correspond the follo
ing values of the coupling parameter and the degeneracy
rameter:G52.4, nLe

359.6. Whereas the HNC scheme sum
up nearly all the interaction contributions but does not
count for quantum effects, the opposite is the case for thee4

approximation of the RDF given by Eqs.~14! and ~15!. It
accounts for correlation and quantum effects up to the or
e4 in a consistent manner. As can be seen in Fig. 6, quan
effects shift the RDF at small distancesr to values greater
than zero. This is a result of the uncertainty principle, wh
can also be observed if an effective potential~accounting for
quantum effects in lowest order, e.g., a Kelbg potential! is
used in the HNC scheme.

B. Fully ionized hydrogen

We find the same qualitative behavior as for the EOS
the electron gas for fully ionized hydrogen, which we wa

al
H

e

FIG. 6. Radial distribution function for an electron gas at te
peratureT513105 K for different densities. Curves not especial
denoted are calculated in thee4 approximation@Eq. ~14!#.
7-5
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VORBERGER, SCHLANGES, AND KRAEFT PHYSICAL REVIEW E69, 046407 ~2004!
to study next. Although hydrogen is the simplest elemen
shows features which are not easily described, even in t
modynamic equilibrium. Several very different theoretic
and numerical methods were developed in the past to o
come those difficulties. We mention here wave-pac
molecular-dynamics calculations@18,19# and path integral
Monte Carlo simulations@21,22#.

In Fig. 7 we show a comparison between different a
proximation levels of our theory and WPMD results given
Knaup @20# for two different temperatures. The WPMD
simulations treat protons as classical particles having b
position and momentum and describe the electrons by a
symmetrized wave packets@19#. We find agreement with
simulation data especially in the regionnLe

3<1, i.e., for
weakly degenerate plasmas. In this region, some of
WPMD data show pressure abovep/p051, in contrast to our
findings. For densities higher thanr s51 deviations begin to

FIG. 7. Pressure of a fully ionized hydrogen plasma normali
by the ideal gas result atT5105 K ~upper! andT5106 K ~lower!
as a function of the electron density in different approximatio
The WPMD data points were computed by Knaup@20#. The solid
line is oure4 approximation@Eq. ~12!#, the dashed curve gives th
MW approximation. The low density Debye-Hu¨ckel result is dash-
dotted, whereas theT50 result is dotted. Additionally, some pa
rameters are shown: the classical coupling parameterG
5e2/(kBTd) (d5@3/(4pn)#1/3—mean particle distance!, the de-
generacy parameternL3 ~for electrons!, and r s , the nonideality
parameter in the quantum case.
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grow. Both the MW ande4 expansions fail to meet the
WPMD points. Taking into account thee4 exchange term
leads to a pressure larger than the ideal part. In this reg
the electrons form a weakly coupled quantum gas and
protons form a strongly coupled classical fluid. Our approa
fails to describe these strong correlations. We want to rem
that for protons the degeneracy parameternLp

3 is equal to
unity at n'631027 cm23 for T5105 K and at n'2
31029 cm23 for T5106 K.

Another numerical method is the PIMC simulation. The
are two different techniques called RPIMC~restricted PIMC;
Militzer and Ceperley@21#! and DPIMC~direct PIMC; Fili-
nov et al. @22#!. Both methods use a path-integral represe
tation of the partition function, but they differ in details o
the handling of the density matrix and in the solution of t
fermion sign problem. Filinovet al. use an analytical high
temperature expression for the two-particle density mat
whereas Militzer and Ceperley solve the Bloch equation
merically for the same purpose.

We compare our results to results of both PIMC tec
niques. First, we show, in Fig. 8, data given by Filinovet al.
@22# for G,1. There is a very good agreement with less th
0.5% deviation atG50.2 up to 5% deviation atG50.8.

A similar good agreement can be found at lower densi
in Fig. 9, where we show our results for an isotherm atT
5125 000 K together with RPIMC results by Militzer an
Ceperley@21#. Additionally we show, in Fig. 9, a low density
expansion up to order (ne2)5/2 @17#. For higher densities, a
can also be seen in Fig. 10, the simulation data and
results fail to match. This is due to strong correlations, i
bound states~hydrogen atoms! and other complexes which
change the behavior of the thermodynamic quantities in
parameter region. Additionally, in Fig. 10, the Pade´ formula
results and WPMD data taken from@18# are shown.

V. CONCLUSION

We calculated the equation of state of dense hydroge
the e4 approximation using thermodynamic Green’s fun

d

.

FIG. 8. Pressure of hydrogen as a function of the electron
generacy parameternL3 for different values of the classical cou
pling parameterG5e2/(kBTd) (d5@3/(4pn)#1/3—mean particle
distance! in different techniques: DPIMC results of Filinovet al.
@22# ~crosses!, our results~solid!. The value ofG belonging to a
certain curve changes from top to bottom as indicated.
7-6
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EQUATION OF STATE FOR WEAKLY COUPLED . . . PHYSICAL REVIEW E69, 046407 ~2004!
tions. Our approximation is valid for weakly coupled sy
tems of any degeneracy. In these parameter regions ou
pansion is of high accuracy. We mention that the inclusion
the exchange contribution of ordere4 gives an essential con
tribution to the thermodynamic functions for the electron
From Figs. 4, 6, 7, and 10, one can see that there is s
need for further efforts in the intermediate density regio
which should be covered by numerical experiments.

We compared our results to those of very different sim
lation methods. ForG,1 we found good agreement with a
of those techniques. Some of the WPMD results show
larger deviations from our results than the PIMC data. F
higher coupling we must state that our approach is not g
enough to describe the strong coupling in the proton s
system. Strong coupling may also occur in systems of ion
a trap@24#. In ion systems and in the proton subsystem
exchange contributionne4 does not give an essential contr
bution. However, the approximation up to the MW term

FIG. 9. Pressure of hydrogen with respect to the ideal gas
function of the electron density in different techniques. RPIMC d
~triangles! is of Militzer and Ceperley@21#, the solid line and the
dashed curve are oure4 @Eq. ~12!# and MW approximations, respec
tively. The short dotted line gives a low density expansion up
(ne2)5/2 due to Riemannet al. @17#.
, J

s
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04640
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d
r
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e

sufficient only for smallG values; for higher ones one shou
add~classical! HNC based contributions to the pressure. T
physical situation becomes easier to describe again when
ideal part of the pressure of the degenerate electron
dominates, and additionally the protons become degene
For this situation up to now there exist no simulation data
comparison. A future task will be the inclusion of high
order correlations, which will allow the approach presen
here to be applied to strongly coupled degenerate quan
plasmas. Furthermore, it would be of interest to consider
region where protons behave like Fermi particles and co
pare our results to simulations.
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FIG. 10. Internal energy of hydrogen with respect to the id
gas as a function of the electron density in different techniqu
DPIMC data of Militzer @21#; WPMD data of Knaupet al. @18#;
Padéformula from@23#; the solid and dashed curves are our resu
Additionally theT50 limiting result is shown~long dotted!.
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